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Plastoglobules are lipoprotein particles inside chloroplasts. Their numbers have been shown to increase during the

upregulation of plastid lipid metabolism in response to oxidative stress and during senescence. In this study, we used state-

of-the-art high-pressure freezing/freeze-substitution methods combined with electron tomography as well as freeze-etch

electron microscopy to characterize the structure and spatial relationship of plastoglobules to thylakoid membranes in

developing, mature, and senescing chloroplasts. We demonstrate that plastoglobules are attached to thylakoids through a

half-lipid bilayer that surrounds the globule contents and is continuous with the stroma-side leaflet of the thylakoid

membrane. During oxidative stress and senescence, plastoglobules form linkage groups that are attached to each other

and remain continuous with the thylakoid membrane by extensions of the half-lipid bilayer. Using three-dimensional

tomography combined with immunolabeling techniques, we show that the plastoglobules contain the enzyme tocopherol

cyclase (VTE1) and that this enzyme extends across the surface monolayer into the interior of the plastoglobules. These

findings demonstrate that plastoglobules function as both lipid biosynthesis and storage subcompartments of thylakoid

membranes. The permanent structural coupling between plastoglobules and thylakoid membranes suggests that the lipid

molecules contained in the plastoglobule cores (carotenoids, plastoquinone, and tocopherol [vitamin E]) are in a dynamic

equilibrium with those located in the thylakoid membranes.

INTRODUCTION

Plastoglobules are lipid bodies produced by plastids

(Lichtenthaler, 1968). It has been proposed that, like the lipid

bodies formed at the endoplasmic reticulum (ER) (Fernandez and

Staehelin, 1987), plastoglobules may be surrounded by a lipid

monolayer studded with proteins (Kessler et al., 1999; Smith

et al., 2000). However, the origin of plastoglobules is still unclear.

Whereas some studies have suggested that they form as blebs

on thylakoid membranes (Yao et al., 1991a, 1991b; Ghosh et al.,

1994) analogous to lipid body formation at the ER (Huang, 1996),

others have suggested that they form in conjunction with the

inner chloroplast envelopemembrane (Kessler et al., 1999). It has

also been hypothesized that plastoglobules can detach from

their parent membrane and reattach at a different membrane

site, potentially ferrying plastid lipids from one site to another

(Hansmann and Sitte, 1982).

The number of plastoglobules per plastid has been shown to

vary during plastid development. In etioplasts, the number of

plastoglobules is high but decreases upon light-induced green-

ing and conversion of the etioplast to chloroplasts (Lichtenthaler

and Tevini, 1970; Tevini et al., 1977). During senescence, the

number of plastoglobules increases as the thylakoids break

down. Plastoglobule numbers also increase in plants subjected

to environmental conditions that increase oxidative stress on the

photosynthetic apparatus. These include increasedconcentrations

of CO2 (Sallas et al., 2003), growth in high-copper-containing soil

(Panou-Filotheou et al., 2001), drought (Munne-Bosch and

Alegre, 2004), increased ozone concentrations (Britvec et al.,

2001), high saline concentrations (Sam et al., 2003), exposure to

organic Ni(II) complexes (Molas, 2002), viral infection (Hernandez

et al., 2004), andmicrogravity growth conditions (Kochubey et al.,

2004).

Biochemical analyses of isolated plastoglobule fractions have

shown that they contain a variety of lipidic compounds, including

monogalactosyldiacylglycerol, digalactosyldiacylgycerol, free

fatty acid, triacylglycerols, carotenoids, prenylquinones (tocoph-

erols, plastoquinone, and menaquinones), and chlorophylls

(Lichtenthaler, 1966; Steinmuller and Tevini, 1985; Tevini and

Steinmuller, 1985; Ghosh et al., 1994; Kaup et al., 2002).

Plastoglobules also contain at least a dozen different proteins

(Kessler et al., 1999; Vidi et al., 2006; Ytterberg et al., 2006), but

only the plastid lipid-associated proteins, which belong to the

PAP/fibrillin family of proteins, have been identified as plasto-

globule-specific proteins (Deruere et al., 1994; Pozueta-Romero

et al., 1997; Kessler et al., 1999). They have been shown to bind

carotenoids and are believed to serve structural roles in both

chromoplast carotenoid fibrils and chloroplast plastoglobules
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(Deruere et al., 1994; Kessler et al., 1999; Rey et al., 2000; Laizet

et al., 2004). As demonstrated here and elsewhere (Vidi et al.,

2006; Ytterberg et al., 2006), there is now evidence for plasto-

globules serving a biosynthetic function as well.

To understand how the lipid storage and biosynthetic activities

of plastoglobules contribute to the functioning of chloroplasts, it

is essential to know where and how plastoglobules are formed

and whether they are physically attached to thylakoid mem-

branes during development and senescence. To date, all of the

structural studies of plastoglobules have used chemical fixation

methods for specimen preparation and transmission electron

microscopy for thin-section analyses. These techniques are

inherently limited in their ability to preserve and characterize

the three-dimensional architecture of these chloroplast compo-

nents. To surmount these limitations, we have characterized the

spatial relationship of plastoglobules and other chloroplast

structures using a combination of state-of-the-art electron mi-

croscope specimen preparation and analysis techniques, in-

cluding high-pressure freezing/freeze-substitution, electron

tomography, immunoelectron tomography, and freeze-etch elec-

tron microscopy methods. Our data demonstrate that plasto-

globules form on thylakoidmembranes, that they are surrounded

by a half bilayer membrane that is continuous with the thylakoid

outer leaflet, that they contain different proteins within the lipid

monolayer that surrounds them, and that they remain structurally

coupled to thylakoids throughout their life span.

RESULTS

Plastoglobules Arise by a Membrane-Blistering

Mechanism along Highly Curved Thylakoid Margins

We analyzed 305 plastoglobules contained in 20 tomographic

reconstructions (;4500 tomographic slices),;300 thin-section

electron micrographs of chloroplasts preserved by high-pressure

Figure 1. Plastoglobule Location in Relation to the Thylakoid Membranes.

(A) and (B) Two composite tomographic slice images (five superimposed serial 2.2-nm slices) of grana thylakoids (gt), stroma thylakoids (st), and

plastoglobules (pg) in an intact, isolated spinach chloroplast.

(C) and (D) Tomographic model of the grana stack shown in (A) and (B) as seen in a side view (C) and a top-down view (D) ([C] rotated 908). Note that in

(D), the top-most stoma thylakoid has been removed to provide a clearer view of the clusters of plastoglobules that are associated with areas of high

curvature of the stroma and grana thylakoids.
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freezing and freeze-substitution techniques, and;100 electron

micrographs of freeze-fractured isolated chloroplasts. To deter-

mine whether plastoglobules are formed exclusively in close

association with thylakoids, or whether they may arise at the

inner chloroplast envelope membrane, wemapped the positions

of all of the plastoglobules in our tomograms and thin sections.

One hundred percent of the plastoglobules were seen in close

proximity to thylakoids, and none was adjacent to an inner

envelope membrane (Figures 1 to 4). Furthermore, 98% of the

plastoglobules were associated with thylakoid membrane areas

with a high curvature (i.e., along the nonappressed thylakoid

margins) (Figure 1). The remaining 2%of the plastoglobules were

always within 30 nm of such highly curved regions (Figure 2). The

highly curved margins of stroma thylakoids also gave rise to

more plastoglobules (>70%) than the highly curved, nonap-

pressed regions of grana stacks.

To characterize howplastoglobules are physically linked to the

highly curved thylakoid margins, we examined all of the serial

2.2-nm-thick tomographic slices that passed through plastoglo-

bules. The images shown in Figure 2 are from two such series of

slice images. Figures 2A to 2C represent images of every fourth

2.2-nm tomographic slice, and Figures 2F to 2H show tilted

images of Figure 2E (every seventh 2.2-nm slice image shown).

The tomographic reconstruction of the plastoglobule and thyla-

koid membranes seen in Figures 2A to 2C is illustrated in Figure

2D. Figures 2B and 2G clearly show that the outer leaflet of the

thylakoid membrane blistered to generate the plastoglobule,

forming a half lipid bilayer cover around the lipidic plastoglobule

contents, whereas the inner leaflet of the thylakoid membrane

retained its planar configuration.

To confirm these electron tomography data, we also investi-

gated the structures of plastoglobules by means of freeze-

fracture (-etch) electron microscopy (Figure 3). The advantage

of this technique for analyzing lipidic cellular structures is that the

imaging does not depend on any chemical staining of the sam-

ple. Instead, the images are produced by platinum-carbon

replicas of the rapidly frozen and freeze-fractured (-etched)

sample surfaces at �1008C. The most important feature of this

technique for this investigation is that at �1008C the fracturing

process produces fracture planes that follow interface regions

between structures held together by hydrophobic interactions

(i.e., along the central plane of the bilayer membrane) (Branton,

1966) and along the interface between the lipid core and the

surface monolayer of oil bodies attached to ER membranes

(Fernandez and Staehelin, 1987). As demonstrated in Figure 3,

the same type of fracture faces seen in oil bodies are also

observed in our plastoglobule-containing samples. In particular,

in Figures 3A and 3B, the central core region of the plastoglobule

is seen to be surrounded by a ridge that corresponds to the edge

of the cross-fractured half-lipid bilayers that encompasses the

plastoglobules. Similar lipid monolayer structures are seen to

form the narrow neck-like region of the two plastoglobules

shown in Figure 3D. The micrograph in Figure 3A also demon-

strates that the lipid core material of the plastoglobule extends

through the neck region to the center of the bilayermembrane (cf.

with Figures 2B and 2G). In Figure 3C, the neck region is seen as

a funnel-shaped structure with a central lipidic plug caused by

the breaking away of the plastoglobule from the neck during the

fracturing process.

Single and Grouped Plastoglobules Remain Physically

Coupled to Thylakoids throughout Their Life Span

Based on the ultrastructural analysis of chemically fixed chloro-

plasts and biochemical studies, it has been suggested that

Figure 2. Electron Tomographic Imaging of Plastoglobule–Thylakoid Membrane Connecting Sites.

(A) to (C) Serial 2.2-nm tomographic slice images (every fourth slice shown) through a plastoglobule (pg) blistering from the margin of a thylakoid

membrane from a greening Arabidopsis chloroplast. The arrowheads point to the sites where the outer leaflet of the thylakoid membrane has separated

from the inner leaflet to form the half bilayer surrounding the plastoglobule. Note that the inner leaflet of the thylakoid membrane can also be seen in (B).

gt, grana thylakoid; st, stroma thylakoid.

(D) Tomographic model of the plastoglobule shown in (A) to (C).

(E) A face-on view of a plastoglobule–thylakoid membrane connection.

(F) to (H) Serial 2.2-nm rotated (x¼ 208, y¼ 21.58, z¼ 6.58) tomographic slice images of (E) through a plastoglobule–thylakoid connection. Note that the

arrowheads in (G) point to the neck-like plastoglobule–thylakoid membrane continuous membrane connection.
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plastoglobules develop on thylakoids but may subsequently de-

tach to form free-floating entities (Hansmann and Sitte, 1982). To

test this hypothesis, we analyzed >300 plastoglobules in develop-

ing, mature, and senescing chloroplasts preserved by high-

pressure freezingand freeze-substitution techniques.Thisanalysis

failed todetect a singleplastoglobule thatwas free-floating. In fact,

using the three-dimensional tomographic serial sectioning tools of

IMOD, we determined that even plastoglobules located at a

distance from a thylakoidmembrane remained physically coupled

to the membrane by linking to adjacent plastoglobules via a

continuous half bilayer envelope (Figure 4). Examples of the

narrow, tubular connecting elements between adjacent plastoglo-

bules are most clearly seen in tomographic images and freeze-

fracture micrographs (Figures 3C, 4A, and 4C). Hence, every

plastoglobule is always structurally coupled to another plastoglo-

bule and/or to a thylakoid membrane through a half bilayer.

In greening and mature chloroplasts, 95% of the mapped

plastoglobules (n ¼ 50) were single plastoglobules with diame-

ters of 45 to 60 nm, all of which were coupled to a thylakoid

membrane via a narrow, half-lipid bilayer neck (Figures 2, 3A, and

3B). The remaining plastoglobules were organized into small

clusters of two or three interconnected plastoglobules (Figures

3C and4). By contrast, in senescing, light-stressed, and drought-

stressed chloroplasts, the plastoglobules not only exhibited

greater variations in size (28 to 73 nm in diameter) but also

tended to be organized into larger clusters, with as many as

seven plastoglobules linked together by a half-lipid bilayer

boundary layer (Figures 4C, 4D, and 5). These linked plastoglo-

bules formed both linear aggregates, like beads on a string

(Figure 5B), and branched structures, with one plastoglobule

connected to either three plastoglobules (Figure 4E) or to two

plastoglobules and the thylakoidmembrane (Figures 4D and 5D).

In the tomographic reconstructions shown in Figures 4 and 5, the

sites of the thylakoid-to-plastoglobule links are marked with

arrows. Most larger plastoglobule linkage groups exhibit a

kinked configuration (Figures 5D and 5E).

PGL35 and Tocopherol Cyclase Localize to the Half Bilayer

Surrounding Plastoglobules

Proteomic studies of plastoglobules have shown that they con-

tain structural (PAP/fibrillins) (Kessler et al., 1999) as well as

Figure 3. Freeze-Fracture Electron Micrographs of Plastoglobule–Thylakoid and Plastoglobule–Plastoglobule Connections.

(A) and (B) Two examples of plastoglobule–thylakoid interactions. In both images, the half-lipid bilayer that surrounds the lipid core has been partly torn

away to expose the lipidic contents of the plastoglobule (pg). The edge of the remaining cross-fractured half bilayer is seen as a ridge-like structure that

can be followed through the narrow neck region to the stroma leaflet of the thylakoid membrane (arrowheads). The extension of the core material in the

neck region up to the middle of the thylakoid membrane is most evident in (A) (cf. also with Figure 2G).

(C) The arrowhead points to a cross-fractured neck region exposed by the breaking away of the plastoglobule. The neck region, as seen from the inside

of the plastoglobule, exhibits a funnel-shaped geometry.

(D) Longitudinal fracture through two plastoglobules connected through a half-lipid bilayer tube.
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enzymatic proteins (Vidi et al., 2006; Ytterberg et al., 2006). To

verify the association of two of these proteins with plastoglo-

bules, we performed immunoelectron tomographic studies on

high-pressure frozen/freeze-substituted chloroplasts from Arab-

idopsis thaliana, tobacco (Nicotiana tabacum), and spinach

(Spinacia oleracea) embedded in Lowicryl HM20 resin using

specific antibodies raised against two plastoglobulins (pea

[Pisum sativum] PGL1 [Kessler et al., 1999] and Arabidopsis

PGL35 [Vidi et al., 2006]) as well as against Arabidopsis tocoph-

erol cyclase (VTE1 [Kanwischer et al., 2005]). The anti-PGL1

antibodies were used as controls in all three species to confirm

the previous plastoglobule labeling results on chemically fixed

isolated pea chloroplast samples by Kessler et al. (1999). In all of

our samples, the anti-PGL1 antibodies produced specific label-

ing of the plastoglobules (data not shown). We examined eight

tomographic reconstructions containing 15 anti-VTE1 and 17

anti-PGL35 immunolabeled plastoglobules. Figure 6 shows the

labeling of an Arabidopsis chloroplast with the anti-PGL35 (Fig-

ures 6A to 6D) and the anti-VTE1 (Figures 6E to 6H) antibodies

together with corresponding three-dimensional models. Both

anti-PGL35 and anti-VTE1 gold particles were bound to the

surface of the plastoglobules and to epitopes exposed to the

interior of the plastoglobules. This latter type of labeling was

made possible by the fact that during the immunolabeling of the

thin sections, the hydrophobic lipid core of the plastoglobules

can fall out, thereby exposing the inner surface of the plastoglo-

bule half-lipid bilayer. Hence, by exploiting the enhanced z axis

resolution of the immunotomography techniques, we can deter-

mine whether the gold labels are only on the external surface of

the plastoglobules or located within the plastoglobule interior

(indicating that the proteins are localized within the plastoglobule

half-lipid bilayer). As illustrated in Figures 7A to 7E showing an

immunolabeled three-dimensional tomogram (every fifth tomo-

graphic slice shown), the anti-VTE1 immunogold particles are

located at different depths within the plastoglobule (Figure 7F),

indicating that VTE1 and PGL35 (data not shown) are anchored

within the half-lipid bilayer membrane and extend into the interior

of the plastoglobule (Figure 8).

The tomographic models also demonstrated that the anti-

PGL35 antibodies labeled the links between connected plasto-

globules (data not shown). Both the anti-PGL35and the anti-VTE1

antibody labeling was limited to the plastoglobules. No labeling

was seen over thylakoid or inner envelope membranes.

DISCUSSION

Chloroplasts have been the focus of ultrastructural studies for the

past 60 years (Staehelin and Dewit, 1984; Staehelin, 2003). Yet,

the formation and spatial organization of plastoglobules present

within chloroplasts have remained an enigma. The plastoglobule

proteomic study by Kessler et al. (1999) demonstrated that

plastoglobules are more than just excess lipid and protein sinks.

Figure 4. Interconnected Plastoglobules.

Two composite tomographic slice images ([A] and [C]) (five superimposed serial 2.2-nm slices) of groups of interconnected plastoglobules held

together by a common half bilayer surface layer. The image shown in (A) and the corresponding tomographic model (B) depict two linked plastoglobules

in a mature tobacco chloroplast. The image shown in (C) and the corresponding tomographic model (D) show three interconnected plastoglobules of an

isolated intact senescing spinach chloroplast. The white arrowheads point to the links between the interconnected plastoglobules. In both (B) and (D),

the arrows point to the connecting sites between the plastoglobule and thylakoid membrane. st, stroma thylakoid.
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However, in the absence of a well-defined structural context, it is

difficult to envisage how the different enzymatic activities of

plastoglobules relate to chloroplast function. To obtain this

ultrastructural information, we reinvestigated the spatial relation-

ship between plastoglobules and thylakoid membranes in sam-

ples preserved by high-pressure freezing/freeze-substitution

techniques and characterized the structures by a combination

of electron tomography, immunoelectron tomography, and freeze-

fracture (-etch) methods. Together, these techniques have dem-

onstrated that plastoglobules constitute a distinct structural and

functional subcompartment of thylakoids, that they contain both

lipid binding proteins and enzymes involved in lipid biosynthesis

and metabolism, and that they are always physically coupled to

thylakoid membranes via a half-lipid bilayer.

Plastoglobules Are Formed in Regions of High Curvature

of Thylakoid Membranes by Blistering of the Outer

Membrane Leaflet

The literature on plastoglobules contains conflicting suggestions

regarding where they are formed, the inner chloroplast envelope

membrane (Kessler et al., 1999) or thylakoids (Ghosh et al., 1994),

and theextent towhich theycandetachand reattach to thylakoids.

In this study, we did not observe any plastoglobules attached to or

associated with the inner chloroplast envelope membrane or any

free-floating plastoglobules in the chloroplast stroma. Indeed,

100%of the;300 plastoglobules examined were observed to be

physically attached to a thylakoidmembrane via a half-lipid bilayer

Figure 5. Plastoglobule Cluster.

(A) Tomographic models showing the location and organization of

plastoglobules (pg) from an isolated senescing spinach chloroplast.

The plastoglobules are associated with areas of high membrane curva-

ture. gt, grana thylakoid; st, stroma thylakoid.

(B) to (E) Four groups of interconnected plastoglobules in the large

cluster as demonstrated in the following models: four plastoglobules

linked linearly (B); two single plastoglobules blistering from a stroma

thylakoid membrane (C); four linked plastoglobules in a kinked config-

uration (D); and seven plastoglobules linked together, also in a kinked

configuration (E). Note that in (B), (D), and (E), the arrows point to the

connecting sites between the plastoglobule and the thylakoid mem-

brane.

Figure 6. PGL35 and VTE1 Immunogold Labeling.

Tomographic slice image views of plastoglobules in Arabidopsis chloro-

plasts immunolabeled with anti-PGL35 ([A] and [C]) and anti-VTE1 ([E]

and [G]) antibodies, and corresponding tomographic models depicting

the immunogold labels in a three-dimensional context ([B] and [D] and

[F] and [H], respectively). The tomographic images are of 20 super-

imposed 2.2-nm-thick slices. Note that whereas most of the gold label

appears to be associated with the coat layer of the cross-sectioned

plastoglobules ([A] to [H]), one of the labeled plastoglobules in (G)

exhibits labeling across its surface. As demonstrated in Figure 7, this

surface corresponds to the inner surface of the plastoglobule coat

monolayer. gt, grana thylakoid; pg, plastoglobule; s, starch; st, stroma

thylakoid.
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that surrounded the lipidic globule core and were continuous with

the stroma-side leaflet of the thylakoidmembrane (Figures 2B, 2G,

3A, and8). Theseobservations indicate that plastoglobules remain

structurally and functionally coupled to thylakoid membranes

throughout their life span.

In light of the results presented here, the similarities between the

formation of plastoglobules on thylakoid membranes and the

formation of oil bodies on the ERmembrane are quite striking. For

example, as the triacylglycerol oilmoleculesare synthesizedbyER

enzymes, they partition into the interior of the lipid bilayer and

accumulate at sites rich in oleosin and other specific molecules

(Huang, 1996). During this process, the oleosins induce the cyto-

solic leaflet of theERmembrane to formablister that gives rise to a

spherical oil body surrounded by a lipid monolayer and the

characteristic oil body proteins (Fernandez and Staehelin, 1987;

Fernandez et al., 1988). However, unlike the plastoglobules, the oil

bodies do appear to detach from the ER membrane, and during

seed germination in barley (Hordeum vulgare), their phospholipid

boundary layer can fuse with the cytosolic leaflet of protein body

membranes to allow for the transfer of lipase molecules via lateral

diffusion to the oil bodies (Fernandez and Staehelin, 1987).

Plastoglobules Contain Both Structural

and Biosynthetic Proteins

One of the most important insights gained from the proteomic

analysis of isolated plastoglobules is that they contain, in addi-

tion to known structural proteins, enzymes involved in lipid syn-

thesis and metabolism (Vidi et al., 2006; Ytterberg et al., 2006).

Members of the structural, carotenoid binding PAP/fibrillin (plas-

toglobulin) protein family have been shown previously to localize

to the surface of plastoglobules (Pozueta-Romero et al., 1997;

Kessler et al., 1999). As illustrated in Figures 6A to 6D, we have

confirmed this localization in cells preserved by high-pressure

freezing/freeze-substitution techniques and immunolabeled with

anti-PGL1 and anti-PGL35 antibodies. Of greater interest, how-

ever, is the localization of the enzyme tocopherol cyclase (VTE1)

to plastoglobules (Figures 6E and 6H). VTE1 catalyzes the

penultimate step of tocopherol (vitamin E) synthesis (Kanwischer

et al., 2005). It has been shown that tocopherol cyclase activity is

increased during oxidative stress, protecting the thylakoid mem-

branes and photosynthetic proteins from oxidative damage

caused by activated oxygen species (Porfirova et al., 2002;

Kanwischer et al., 2005). Our data show that the anti-VTE1

antibody labeling occurred exclusively over the plastoglobules,

thereby confirming that plastoglobules function both as biosyn-

thetic and storage compartments of chloroplasts. The binding of

the anti-VTE1 antibodies to the inner surface of the boundary

layer of the plastoglobules demonstrates that this enzyme is in

contact with the contents of the plastoglobules.

During Periods of Oxidative Stress, the Plastoglobules

Become Organized into Large, Interconnected Clusters

That Remain Anchored to Thylakoid Membranes

Several environmental and developmental conditions have been

shown to increase plastoglobule numbers and produce plasto-

globule clusters in chloroplasts, including oxidative stress,

Figure 7. Anti-VTE1 Serial Immunoelectron Tomography.

(A) to (E) Serial 2.2-nm tomographic slice images (every fifth slice shown) through a plastoglobule labeled with anti-VTE1. Note that as one proceeds

from the top of the section (A) to the bottom (E), different groups of 10-nm gold labels, indicated by arrows and numbers, are seen at different depths

within the plastoglobule interior.

(F)Cartoon representation of the plastoglobule, as shown in (A) to (E), with all of the gold labels (the numbers correspond to the numbers assigned to the

gold labels in [A] to [E]) and their respective positions in each tomographic slice (TS).
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senescence, and the chloroplast-to-chromoplast transition

(Sprey and Lichtenthaler, 1966; Lichtenthaler, 1968; Weinert,

1970; Steinmuller and Tevini, 1985; Deruere et al., 1994; Smith

et al., 2000). Because these conditions also lead to increases in

plastoglobule-specific proteins, including VTE1 (Porfirova et al.,

2002; Kanwischer et al., 2005) and PAP/fibrillins (Bathgate et al.,

1985; Deruere et al., 1994), it has been suggested that plasto-

globule formation is dependent on the synthesis of such proteins.

This notion has been tested by expressing the pepper (Capsicum

annuum) fibrillin protein in tobacco, yielding plants with

increased numbers of clustered plastoglobules within the chlo-

roplasts (Rey et al., 2000). Despite numerous reports on plasto-

globule clustering, neither the origin nor the functional

significance of the clustering process has been addressed.

The discovery that the clustered plastoglobules formed under

stress conditions are structurally linked to each other and to

thylakoid membranes via an encompassing lipid monolayer (Fig-

ures 3 and 4) provides new insights into both the mechanism of

plastoglobule formation and their function. First, it suggests that

plastoglobules can be formed by two mechanisms: through

blistering of the stroma leaflet of thylakoid membranes (primary

blistering events) and by blistering from the surface of existing

plastoglobules (secondary blistering events). Furthermore, the

maintenance of the connections between the plastoglobules and

the thylakoidmembranes suggests that the plastoglobules remain

functionally coupled to thylakoids throughout their life span. Most

notably, the type of physical coupling observed allows for the free

exchange of lipid molecules such as plastoquinone, carotenoids,

and tocopherol (vitamin E) between the plastoglobules, the sites of

their synthesis and/or storage, and the thylakoids, where these

molecules serve as electron carriers and protect the complexes of

the photosynthetic apparatus from free radical damage.

Plastoglobule Formation Appears to Be Driven

by the Physicochemical Properties

of Plastoglobulin-Type Proteins

Our anti-PGL35 labeling shows that PGL35 is confined to the

surface layer of plastoglobules (Figure 6) and that it is not found

to any significant extent in either thylakoid membranes or the

chloroplast stroma. This finding supports an earlier study in

which the related plastoglobulin PGL1 was found to be exposed

on the surface of plastoglobules (Kessler et al., 1999). Plasto-

globulins have also been shown to bind carotenoids, hydropho-

bicmolecules that partition into the interior of bilayermembranes

(Deruere et al., 1994; Kessler et al., 1999; Laizet et al., 2004).

Together with our immunotomography data, these findings sug-

gest that plastoglobulins are iceberg- or thumbtack-type mole-

cules with a hydrophilic domain exposed to the chloroplast

stroma and a hydrophobic domain that extends into the interior

of the plastoglobules and is involved in carotenoid binding

(Figure 8). Thus, plastoglobulins appear to possess architectural

features reminiscent of oleosin molecules, which have been

shown to induce themembrane-blistering process that gives rise

to lipid bodies on the ER and also to stabilize the lipid bodies

formed in this manner (reviewed in Murphy, 1993). Based on

these similarities, we postulate that plastoglobulins share the

ability of oleosins to induce blister formation on thylakoid

membranes in response to the accumulation of protective hydro-

phobic molecules such as carotenoids, tocopherol, and plasto-

quinone in these membranes.

The extent to which enzymes such as VTE1 also participate in

the generation of new plastoglobules is unknown. The observa-

tion that VTE1 extends beyond the inner surface of the half

bilayer boundary layer and into the plastoglobule core (Figure 7)

is supportive of the idea that this protein could be involved in

plastoglobule formation. As with PGL35, this finding also sug-

gests that the active site of VTE1 is located within the lipidic core

of plastoglobules and that the protein extends to the outer

surface of the plastoglobule.

The observation that virtually all (;98%) of the plastoglobules

were connected to the highly curved margins of the thylakoids

suggests that the physical properties and/or composition of

these curvedmembrane regions are conductive to plastoglobule

formation. In particular, the packing geometry of the bilayer lipids

in such curved regions (Figure 8) would favor the accumulation of

wedge-shaped integral proteins, such as plastoglobulins and

Figure 8. Plastoglobule Formation and Organization Overview.

(A) Plastoglobules form exclusively on thylakoid membranes at areas of

high curvature.

(B) Plastoglobules blister from the outer leaflet of the thylakoid mem-

brane, and this half-lipid bilayer surrounds the plastoglobule. Mostly

under oxidative stress conditions, the plastoglobules form intercon-

nected linkage groups surrounded by a single continuous half-lipid bilayer.

(C) The half-lipid bilayer that surrounds the plastoglobule is studded with

several proteins, both structural (plastoglobulins) and enzymatic (VTE1).

These proteins would have their functional sites located within the

plastoglobule interior.
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VTE1, but not bilayer-spanning membrane proteins, such as

the complexes of the photosynthetic electron transport chain

(Merchant and Sawaya, 2005).

METHODS

Plant Material

Seeds of Arabidopsis thaliana (Landsberg erecta wild type) and tobacco

(Nicotiana tabacum) wereplantedon 0.8% (w/v) agar plateswithMurashige

and Skoog medium and 1% sucrose for 5 d. Plants were grown at a

temperature of 238C, a light intensity of 150 mmol�m�2�s�1, and a photo-

period of 16/8 h light/dark. Soil-grown plants under high light stress were

grown under 700 mmol�m�2�s�1, and drought stress was induced by

wateringplants onceweekly. Fresh spinach (Spinacia oleracea) wasbought

at a local supermarket (Whole Foods Market) and used the same day.

Intact Chloroplast Isolation for Electron Microscopy

Fiftygramsofwashedspinach leaveswasaddedto125mLofbuffer1 (0.4M

NaCl, 2 mM MgCl, 0.2% BSA, and 20 mM Tricine, pH 8.0) and diced in a

blender equipped with razor blades. This was filtered through four layers of

cheesecloth, and large debris was removed by centrifuging at 300g for

1min. The supernatantwas centrifuged at 4000g to pellet chloroplasts. The

resulting pellet of chloroplast was washed gently, without disrupting the

pellet, with buffer 2 (0.15 M NaCl, 5 mM MgCl, 0.2% BSA, and 20 mM

Tricine, pH8.0), and the supernatant was removed and replacedwith buffer

3 (0.4 M sucrose, 0.15 M NaCl, 5 mMMgCl, and 20 nM HEPES, pH 7.5).

Sample Preparation for Electron Tomography

Leaves were excised from plants and transferred to aluminum sample

holders cryoprotected with 150 mM sucrose, or isolated chloroplasts

were placed into aluminum sample holders and frozen in a Baltec HPM

010 high-pressure freezer (Technotrade). Samples were then freeze-

substituted in 2% OsO4 in anhydrous acetone at �808C for 5 d, followed

by slow warming to room temperature over a period of 2 d, removed from

the holders, and infiltrated with increasing concentrations of Epon (Ted

Pella). Polymerization was performed at 608C for 2 d under vacuum. Epon

sections (250 to 450 nm thick) were prepared for electron tomography as

described by Otegui et al. (2001).

For protein immunogold labeling, the high-pressure frozen samples were

substituted in 0.1%uranyl acetate plus 0.25%glutaraldehyde in acetone at

�808C for 5 d and then warmed to �608C for 18 h. After several acetone

rinses, samples were removed from the holders and slowly infiltrated under

controlled timeand temperature conditions in a Leica AFSsystemat�608C

with Lowicryl HM20 resin according to the following schedule: 25, 50, 75,

and 100% (12 h at each concentration). The samples were finally polymer-

ized at�608C under UV light for 72 h. During an additional 3 d, 100%HM20

was used and was replaced with freshly made resin every 8 h.

Immunocytochemistry

The antibodies pea (Pisum sativum) anti-PG1 (Kessler et al., 1999),

Arabidopsis anti-PGL35 (Vidi et al., 2006), and Arabidopsis anti-VTE1

(Kanwischer et al., 2005) were used to determine whether these proteins

were specific to plastoglobules. Samples embedded in Lowicryl HM20

were sectioned into 100-nm-thick sections and placed on Formvar-coated

gold slot grids. Immunocytochemistry was performed essentially as de-

scribed byOtegui et al. (2001). Briefly, the sectionswere blocked for 20min

with a 5% (w/v) solution of nonfat milk in TBS plus 0.1% Tween 20 (TBST).

Primary antibodies were diluted 1:20 in a solution of 2.5% nonfat milk in

TBST at room temperature for 1 h. The sections were rinsed in a stream of

TBS plus 0.5% Tween 20 and then transferred to the secondary antibody

(anti-rabbit IgG 1:20 in TBST) conjugated to 10-nm gold particles for 1 h.

Control procedures were performed by omitting the primary antibody.

Freeze-Fracture

Isolated intact chloroplasts were prepared as described above. After the

300g spin, the supernatant was pelleted at 1000g, the chloroplasts were

resuspended in buffer 3 and pelleted at 10,000g, and the pelletedmaterial

was rapidly frozen on copper supports in liquid propane held at

;�1608C. Preparation of the freeze-fracture replicas was according to

Greene et al. (1988).

Intermediate- and High-Voltage Electron Microscopy

and Acquisition of Tilt Series Images

Seventeen tomogramswere collected on a FEI Tecnai TF30 intermediate-

voltage electron microscope operating at 300 kV. The images were taken

at 320,000 from þ608C to �608C at 18C intervals about two orthogonal

axes (Ladinsky et al., 1997) and collected with a Gatan Megascan 795

digital camera that covered an area of 2.63 2.6 mm2 and had a resolution

of 2048 3 2048 pixels at a pixel size of 1.26 nm. The remaining

tomograms were collected on a JEM-1000 high-voltage electron micro-

scope (JEOL) operating at 750 kV. The images were collected as

described by Austin et al. (2005).

Three-Dimensional Tomographic Reconstruction, Modeling,

and Analysis

The images (single or montaged frames) were aligned using the gold

particles as fiducial markers as described previously (Ladinsky et al.,

1999). Each set of aligned tilts was reconstructed into a single-axis

tomogram using the R-weighted back-projection algorithm (Gilbert,

1972). Merging the two single-axis tomograms into a dual-axis tomogram

involved a warping procedure rather than a single linear transformation

producing thedual-axis tomogram (Mastronarde, 1997). In addition, dual-

axis tomograms computed from adjacent serial sections were aligned

and joined to increase the reconstructed volume (Austin et al., 2005).

Tomograms were displayed and analyzed with 3dmod, the graphics

component of the 3DMOD (formerly IMOD) software package (Kremer

et al., 1996). Membranous structures, microtubules, and all types of

vesicles weremodeled as described previously (Marsh et al., 2001). Once

a model was completed, meshes of triangles were computed to define

the surface of each object (Kremer et al., 1996).

The image-slicer tool of 3DMOD was used to display and analyze

tomographic slices extracted from the tomogram in any position or tilt

around the x, y, or z axis. This tool allowed us to obtain squeezed images

in which a number of consecutive 2.2-nm tomographic slices were

combined, thus generating z projections of different thicknesses, more

similar to conventional electron microscopy thin sections.
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